3.9.63 \(\int \sec ^2(c+d x) (a+a \sin (c+d x))^2 \tan ^3(c+d x) \, dx\) [863]

3.9.63.1 Optimal result
3.9.63.2 Mathematica [A] (verified)
3.9.63.3 Rubi [A] (verified)
3.9.63.4 Maple [C] (verified)
3.9.63.5 Fricas [A] (verification not implemented)
3.9.63.6 Sympy [F(-1)]
3.9.63.7 Maxima [A] (verification not implemented)
3.9.63.8 Giac [A] (verification not implemented)
3.9.63.9 Mupad [B] (verification not implemented)

3.9.63.1 Optimal result

Integrand size = 29, antiderivative size = 87 \[ \int \sec ^2(c+d x) (a+a \sin (c+d x))^2 \tan ^3(c+d x) \, dx=-\frac {7 a^2 \log (1-\sin (c+d x))}{8 d}-\frac {a^2 \log (1+\sin (c+d x))}{8 d}+\frac {a^4}{4 d (a-a \sin (c+d x))^2}-\frac {5 a^3}{4 d (a-a \sin (c+d x))} \]

output
-7/8*a^2*ln(1-sin(d*x+c))/d-1/8*a^2*ln(1+sin(d*x+c))/d+1/4*a^4/d/(a-a*sin( 
d*x+c))^2-5/4*a^3/d/(a-a*sin(d*x+c))
 
3.9.63.2 Mathematica [A] (verified)

Time = 0.25 (sec) , antiderivative size = 91, normalized size of antiderivative = 1.05 \[ \int \sec ^2(c+d x) (a+a \sin (c+d x))^2 \tan ^3(c+d x) \, dx=\frac {a^2 \left (3 \text {arctanh}(\sin (c+d x))-6 \sec ^3(c+d x) \tan (c+d x)+\sec (c+d x) \tan (c+d x) \left (3+8 \tan ^2(c+d x)\right )-2 \left (2 \log (\cos (c+d x))+\tan ^2(c+d x)-\tan ^4(c+d x)\right )\right )}{4 d} \]

input
Integrate[Sec[c + d*x]^2*(a + a*Sin[c + d*x])^2*Tan[c + d*x]^3,x]
 
output
(a^2*(3*ArcTanh[Sin[c + d*x]] - 6*Sec[c + d*x]^3*Tan[c + d*x] + Sec[c + d* 
x]*Tan[c + d*x]*(3 + 8*Tan[c + d*x]^2) - 2*(2*Log[Cos[c + d*x]] + Tan[c + 
d*x]^2 - Tan[c + d*x]^4)))/(4*d)
 
3.9.63.3 Rubi [A] (verified)

Time = 0.31 (sec) , antiderivative size = 77, normalized size of antiderivative = 0.89, number of steps used = 6, number of rules used = 5, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.172, Rules used = {3042, 3315, 27, 99, 2009}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \tan ^3(c+d x) \sec ^2(c+d x) (a \sin (c+d x)+a)^2 \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {\sin (c+d x)^3 (a \sin (c+d x)+a)^2}{\cos (c+d x)^5}dx\)

\(\Big \downarrow \) 3315

\(\displaystyle \frac {a^5 \int \frac {\sin ^3(c+d x)}{(a-a \sin (c+d x))^3 (\sin (c+d x) a+a)}d(a \sin (c+d x))}{d}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {a^2 \int \frac {a^3 \sin ^3(c+d x)}{(a-a \sin (c+d x))^3 (\sin (c+d x) a+a)}d(a \sin (c+d x))}{d}\)

\(\Big \downarrow \) 99

\(\displaystyle \frac {a^2 \int \left (\frac {a^2}{2 (a-a \sin (c+d x))^3}-\frac {5 a}{4 (a-a \sin (c+d x))^2}+\frac {7}{8 (a-a \sin (c+d x))}-\frac {1}{8 (\sin (c+d x) a+a)}\right )d(a \sin (c+d x))}{d}\)

\(\Big \downarrow \) 2009

\(\displaystyle \frac {a^2 \left (\frac {a^2}{4 (a-a \sin (c+d x))^2}-\frac {5 a}{4 (a-a \sin (c+d x))}-\frac {7}{8} \log (a-a \sin (c+d x))-\frac {1}{8} \log (a \sin (c+d x)+a)\right )}{d}\)

input
Int[Sec[c + d*x]^2*(a + a*Sin[c + d*x])^2*Tan[c + d*x]^3,x]
 
output
(a^2*((-7*Log[a - a*Sin[c + d*x]])/8 - Log[a + a*Sin[c + d*x]]/8 + a^2/(4* 
(a - a*Sin[c + d*x])^2) - (5*a)/(4*(a - a*Sin[c + d*x]))))/d
 

3.9.63.3.1 Defintions of rubi rules used

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 99
Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_)*((e_.) + (f_.)*(x_) 
)^(p_), x_] :> Int[ExpandIntegrand[(a + b*x)^m*(c + d*x)^n*(e + f*x)^p, x], 
 x] /; FreeQ[{a, b, c, d, e, f, p}, x] && IntegersQ[m, n] && (IntegerQ[p] | 
| (GtQ[m, 0] && GeQ[n, -1]))
 

rule 2009
Int[u_, x_Symbol] :> Simp[IntSum[u, x], x] /; SumQ[u]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 3315
Int[cos[(e_.) + (f_.)*(x_)]^(p_)*((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_ 
.)*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])^(n_.), x_Symbol] :> Simp[1/(b^p* 
f)   Subst[Int[(a + x)^(m + (p - 1)/2)*(a - x)^((p - 1)/2)*(c + (d/b)*x)^n, 
 x], x, b*Sin[e + f*x]], x] /; FreeQ[{a, b, e, f, c, d, m, n}, x] && Intege 
rQ[(p - 1)/2] && EqQ[a^2 - b^2, 0]
 
3.9.63.4 Maple [C] (verified)

Result contains complex when optimal does not.

Time = 0.27 (sec) , antiderivative size = 125, normalized size of antiderivative = 1.44

method result size
risch \(i a^{2} x +\frac {2 i a^{2} c}{d}+\frac {i \left (-8 i a^{2} {\mathrm e}^{2 i \left (d x +c \right )}-5 a^{2} {\mathrm e}^{i \left (d x +c \right )}+5 a^{2} {\mathrm e}^{3 i \left (d x +c \right )}\right )}{2 \left ({\mathrm e}^{i \left (d x +c \right )}-i\right )^{4} d}-\frac {a^{2} \ln \left ({\mathrm e}^{i \left (d x +c \right )}+i\right )}{4 d}-\frac {7 a^{2} \ln \left ({\mathrm e}^{i \left (d x +c \right )}-i\right )}{4 d}\) \(125\)
derivativedivides \(\frac {a^{2} \left (\frac {\left (\tan ^{4}\left (d x +c \right )\right )}{4}-\frac {\left (\tan ^{2}\left (d x +c \right )\right )}{2}-\ln \left (\cos \left (d x +c \right )\right )\right )+2 a^{2} \left (\frac {\sin ^{5}\left (d x +c \right )}{4 \cos \left (d x +c \right )^{4}}-\frac {\sin ^{5}\left (d x +c \right )}{8 \cos \left (d x +c \right )^{2}}-\frac {\left (\sin ^{3}\left (d x +c \right )\right )}{8}-\frac {3 \sin \left (d x +c \right )}{8}+\frac {3 \ln \left (\sec \left (d x +c \right )+\tan \left (d x +c \right )\right )}{8}\right )+\frac {a^{2} \left (\sin ^{4}\left (d x +c \right )\right )}{4 \cos \left (d x +c \right )^{4}}}{d}\) \(137\)
default \(\frac {a^{2} \left (\frac {\left (\tan ^{4}\left (d x +c \right )\right )}{4}-\frac {\left (\tan ^{2}\left (d x +c \right )\right )}{2}-\ln \left (\cos \left (d x +c \right )\right )\right )+2 a^{2} \left (\frac {\sin ^{5}\left (d x +c \right )}{4 \cos \left (d x +c \right )^{4}}-\frac {\sin ^{5}\left (d x +c \right )}{8 \cos \left (d x +c \right )^{2}}-\frac {\left (\sin ^{3}\left (d x +c \right )\right )}{8}-\frac {3 \sin \left (d x +c \right )}{8}+\frac {3 \ln \left (\sec \left (d x +c \right )+\tan \left (d x +c \right )\right )}{8}\right )+\frac {a^{2} \left (\sin ^{4}\left (d x +c \right )\right )}{4 \cos \left (d x +c \right )^{4}}}{d}\) \(137\)
parallelrisch \(-\frac {7 \left (\frac {4}{7}+\frac {4 \left (3-\cos \left (2 d x +2 c \right )-4 \sin \left (d x +c \right )\right ) \ln \left (\sec ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{7}+\left (\cos \left (2 d x +2 c \right )-3+4 \sin \left (d x +c \right )\right ) \ln \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )-1\right )+\frac {\left (\cos \left (2 d x +2 c \right )-3+4 \sin \left (d x +c \right )\right ) \ln \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )+1\right )}{7}-\frac {4 \cos \left (2 d x +2 c \right )}{7}-\frac {6 \sin \left (d x +c \right )}{7}\right ) a^{2}}{4 d \left (\cos \left (2 d x +2 c \right )-3+4 \sin \left (d x +c \right )\right )}\) \(151\)
norman \(\frac {\frac {8 a^{2} \left (\tan ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{d}+\frac {8 a^{2} \left (\tan ^{8}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{d}-\frac {3 a^{2} \tan \left (\frac {d x}{2}+\frac {c}{2}\right )}{2 d}+\frac {5 a^{2} \left (\tan ^{3}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{2 d}+\frac {15 a^{2} \left (\tan ^{5}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{d}+\frac {15 a^{2} \left (\tan ^{7}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{d}+\frac {5 a^{2} \left (\tan ^{9}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{2 d}-\frac {3 a^{2} \left (\tan ^{11}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{2 d}-\frac {2 a^{2} \left (\tan ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{d}-\frac {2 a^{2} \left (\tan ^{10}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{d}+\frac {20 a^{2} \left (\tan ^{6}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{d}}{\left (1+\tan ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )^{2} \left (\tan ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )-1\right )^{4}}+\frac {a^{2} \ln \left (1+\tan ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{d}-\frac {7 a^{2} \ln \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )-1\right )}{4 d}-\frac {a^{2} \ln \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )+1\right )}{4 d}\) \(302\)

input
int(sec(d*x+c)^5*sin(d*x+c)^3*(a+a*sin(d*x+c))^2,x,method=_RETURNVERBOSE)
 
output
I*a^2*x+2*I*a^2/d*c+1/2*I*(-8*I*a^2*exp(2*I*(d*x+c))-5*a^2*exp(I*(d*x+c))+ 
5*a^2*exp(3*I*(d*x+c)))/(exp(I*(d*x+c))-I)^4/d-1/4*a^2/d*ln(exp(I*(d*x+c)) 
+I)-7/4*a^2/d*ln(exp(I*(d*x+c))-I)
 
3.9.63.5 Fricas [A] (verification not implemented)

Time = 0.27 (sec) , antiderivative size = 125, normalized size of antiderivative = 1.44 \[ \int \sec ^2(c+d x) (a+a \sin (c+d x))^2 \tan ^3(c+d x) \, dx=-\frac {10 \, a^{2} \sin \left (d x + c\right ) - 8 \, a^{2} + {\left (a^{2} \cos \left (d x + c\right )^{2} + 2 \, a^{2} \sin \left (d x + c\right ) - 2 \, a^{2}\right )} \log \left (\sin \left (d x + c\right ) + 1\right ) + 7 \, {\left (a^{2} \cos \left (d x + c\right )^{2} + 2 \, a^{2} \sin \left (d x + c\right ) - 2 \, a^{2}\right )} \log \left (-\sin \left (d x + c\right ) + 1\right )}{8 \, {\left (d \cos \left (d x + c\right )^{2} + 2 \, d \sin \left (d x + c\right ) - 2 \, d\right )}} \]

input
integrate(sec(d*x+c)^5*sin(d*x+c)^3*(a+a*sin(d*x+c))^2,x, algorithm="frica 
s")
 
output
-1/8*(10*a^2*sin(d*x + c) - 8*a^2 + (a^2*cos(d*x + c)^2 + 2*a^2*sin(d*x + 
c) - 2*a^2)*log(sin(d*x + c) + 1) + 7*(a^2*cos(d*x + c)^2 + 2*a^2*sin(d*x 
+ c) - 2*a^2)*log(-sin(d*x + c) + 1))/(d*cos(d*x + c)^2 + 2*d*sin(d*x + c) 
 - 2*d)
 
3.9.63.6 Sympy [F(-1)]

Timed out. \[ \int \sec ^2(c+d x) (a+a \sin (c+d x))^2 \tan ^3(c+d x) \, dx=\text {Timed out} \]

input
integrate(sec(d*x+c)**5*sin(d*x+c)**3*(a+a*sin(d*x+c))**2,x)
 
output
Timed out
 
3.9.63.7 Maxima [A] (verification not implemented)

Time = 0.22 (sec) , antiderivative size = 72, normalized size of antiderivative = 0.83 \[ \int \sec ^2(c+d x) (a+a \sin (c+d x))^2 \tan ^3(c+d x) \, dx=-\frac {a^{2} \log \left (\sin \left (d x + c\right ) + 1\right ) + 7 \, a^{2} \log \left (\sin \left (d x + c\right ) - 1\right ) - \frac {2 \, {\left (5 \, a^{2} \sin \left (d x + c\right ) - 4 \, a^{2}\right )}}{\sin \left (d x + c\right )^{2} - 2 \, \sin \left (d x + c\right ) + 1}}{8 \, d} \]

input
integrate(sec(d*x+c)^5*sin(d*x+c)^3*(a+a*sin(d*x+c))^2,x, algorithm="maxim 
a")
 
output
-1/8*(a^2*log(sin(d*x + c) + 1) + 7*a^2*log(sin(d*x + c) - 1) - 2*(5*a^2*s 
in(d*x + c) - 4*a^2)/(sin(d*x + c)^2 - 2*sin(d*x + c) + 1))/d
 
3.9.63.8 Giac [A] (verification not implemented)

Time = 0.33 (sec) , antiderivative size = 78, normalized size of antiderivative = 0.90 \[ \int \sec ^2(c+d x) (a+a \sin (c+d x))^2 \tan ^3(c+d x) \, dx=-\frac {2 \, a^{2} \log \left ({\left | \sin \left (d x + c\right ) + 1 \right |}\right ) + 14 \, a^{2} \log \left ({\left | \sin \left (d x + c\right ) - 1 \right |}\right ) - \frac {21 \, a^{2} \sin \left (d x + c\right )^{2} - 22 \, a^{2} \sin \left (d x + c\right ) + 5 \, a^{2}}{{\left (\sin \left (d x + c\right ) - 1\right )}^{2}}}{16 \, d} \]

input
integrate(sec(d*x+c)^5*sin(d*x+c)^3*(a+a*sin(d*x+c))^2,x, algorithm="giac" 
)
 
output
-1/16*(2*a^2*log(abs(sin(d*x + c) + 1)) + 14*a^2*log(abs(sin(d*x + c) - 1) 
) - (21*a^2*sin(d*x + c)^2 - 22*a^2*sin(d*x + c) + 5*a^2)/(sin(d*x + c) - 
1)^2)/d
 
3.9.63.9 Mupad [B] (verification not implemented)

Time = 10.50 (sec) , antiderivative size = 166, normalized size of antiderivative = 1.91 \[ \int \sec ^2(c+d x) (a+a \sin (c+d x))^2 \tan ^3(c+d x) \, dx=\frac {a^2\,\ln \left ({\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^2+1\right )}{d}-\frac {7\,a^2\,\ln \left (\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )-1\right )}{4\,d}-\frac {a^2\,\ln \left (\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )+1\right )}{4\,d}-\frac {\frac {3\,a^2\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^3}{2}-4\,a^2\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^2+\frac {3\,a^2\,\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}{2}}{d\,\left ({\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^4-4\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^3+6\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^2-4\,\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )+1\right )} \]

input
int((sin(c + d*x)^3*(a + a*sin(c + d*x))^2)/cos(c + d*x)^5,x)
 
output
(a^2*log(tan(c/2 + (d*x)/2)^2 + 1))/d - (7*a^2*log(tan(c/2 + (d*x)/2) - 1) 
)/(4*d) - (a^2*log(tan(c/2 + (d*x)/2) + 1))/(4*d) - ((3*a^2*tan(c/2 + (d*x 
)/2)^3)/2 - 4*a^2*tan(c/2 + (d*x)/2)^2 + (3*a^2*tan(c/2 + (d*x)/2))/2)/(d* 
(6*tan(c/2 + (d*x)/2)^2 - 4*tan(c/2 + (d*x)/2) - 4*tan(c/2 + (d*x)/2)^3 + 
tan(c/2 + (d*x)/2)^4 + 1))